18 Января 2023
У людей, как и у других млекопитающих, особи женского пола имеют две среднего размера хромосомы под названием Х, а самцы — одну обычную Х-хромосому и одну крошечную хромосому под названием Y. Названия здесь не имеют ничего общего с их формой или содержанием; «X» значит просто «неизвестный», потому что изначально, в 1890-е, смысл этой хромосомы был для ученых загадкой. Этот основной «мужской» ген был идентифицирован как SRY (Sex-determining Region Y) молодым австралийским аспирантом в 1990 году. Он работает, запуская генетическую каскадную реакцию, начиная с включения гена SOX9, который является ключевым для определения мужского пола у всех позвоночных, хоть сам он и не находится на половых хромосомах.
Маленькая Y-хромосома для людей всё-таки очень важна, потому что она содержит главный ген, запускающий развитие мужского пола в эмбрионе. Примерно через 12 недель после зачатия этот основной ген включает другие, которые регулируют развитие яичек. А потом уже яички в эмбрионе начинают вырабатывать мужские гормоны (тестостерон и его производные), что обеспечивает развитие ребенка как мальчика.
Большинство млекопитающих имеют X- и Y-хромосомы, похожие на наши. X с большим числом генов и Y с маленьким, среди которых SRY и несколько других. Такое природное явление — надо сказать, довольно необычное. И в принципе вызывает ряд проблем из-за неодинакового количества генов в хромосомах у мужчин и у женщин. X содержит около 900 генов, которые выполняют всевозможные важные функции, не связанные с полом. В отличие от этого, Y содержит всего несколько генов (около 55) и в остальном состоит из не кодирующей ДНК — простой повторяющейся ДНК, которая ничего толком не делает (её так и называют — «мусорной ДНК»). Из этих 55 генов только 27 вроде бы отвечают за «мужское начало» в человеке. Всё остальное далеко не так критично и влияет на цвет глаз, рост, структуру зубов, пухлость губ и форму носа ребенка.
Как возникла такая странная, несимметричная система? Видимо, как и всё остальное, в процессе эволюции. Ненужные и просто «лишние» гены постепенно отсекались, так что в результате переносить в яйцеклетку начинали только самое-самое важное. Одним из доказательств этого для нас стало то, что у австралийского утконоса (это млекопитающее, просто «отпочковавшееся» от нашей ветви давным-давно, 166 млн лет назад) совершенно другие половые хромосомы — больше похожие на таковые у птиц. Пара XY у утконоса полностью равноправна. Размеры Х и Y не отличаются; и мама, и папа передают ребенку одинаковое количество генов. Это говорит нам о том, что в принципе в млекопитающих такое большое различие между X и Y возникло не так давно.
В свою очередь, это должно означать, что наша Y-хромосома потеряла 900 – 55=~845 активных генов за 166 миллионов лет, в течение которых люди и утконосы развивались в разных направлениях. Выходит, что мы теряли примерно по пять генов за миллион лет. При таких темпах последние 55 генов исчезнут через 11 миллионов лет (и ученые реально волнуются).
В научном сообществе сейчас в целом считается, что у людей «мужская» Y-хромосома утратила почти 90 % своих изначальных генов. Этот процесс активно продолжается, риск мутирования у неё в пять раз выше, чем у других участков нашей ДНК. И вполне возможно, что Y-хромосома у людей исчезнет в ходе дальнейших эволюционных изменений.
Как предполагается, в терминальных стадиях дегенерации Y-хромосомы другие хромосомы все чаще используют гены и функции, которые до этого были с ней связаны. В итоге Y-хромосома полностью исчезает и у организмов возникает новая система определения пола. Сейчас известно несколько видов грызунов, которые достигли этой стадии:
- Закавказская слепушонка полностью потеряла Y-хромосому. Все особи обладают генотипом XX. При этом самцы в этом роде грызунов присутствуют, хотя внешне они и почти неотличимы от самок.
- У рюкийской мыши оба пола имеет генотип XO (у людей такое тоже бывает, с частотой 1:1500. При таком наборе половых хромосом возникает крайне неприятный синдром Шерешевского — Тёрнера).
- Лесные и арктические лемминги и несколько видов в роде южно-американских полевых хомячков характеризуются наличием фертильных самок, которые обладают генотипом XY, в дополнение к обычным самкам XX.
На тему продолжительности жизни Y-хромосомы ведутся ожесточенные дебаты и существуют разные мнения. Дают оценки от
бесконечности до
нескольких тысяч лет.
Но сильно переживать не стоит: человечество попросту найдет другой способ определять, кто женщина, а кто мужчина. У нас есть тому пример. На Земле существуют млекопитающие, у которых Y-хромосомы попросту нет, хотя оба пола присутствуют. Возможно, они показывают нам, куда в конце концов мы придем.
Но смысл понятен: то, что Y-хромосома у людей постепенно «хиреет» — вполне логичный процесс. И жить без неё, оказывается, можно вполне легко.
Об этом рассказывает статья в журнале Proceedings of the National Academy of Science
от 28 ноября 2022 г. на примере щетинистой крысы( Amami Tokudaia osimensis), которая определяет самцов совершенно по другим критериям.
До последнего времени было неясно, как у этих животных вообще определяется пол — если у них не работает ген SRY. Но команде биологов из Университета Хоккайдо под руководством Асато Кураивы удалось выяснить это благодаря экспериментам с японскими щетинистыми крысами — группой из трех видов грызунов, живущих на разных маленьких островах и находящихся под угрозой исчезновения.

Команда Кураивы обнаружила, что большинство генов с Y-хромосомы у этих крыс были перемещены в другие хромосомы. Но не было ни признаков SRY, ни гена, который бы его заменял. Вместо этого команда обнаружила последовательности, которые были в геномах самцов, но не были в геномах самок. Разница была совсем крошечной (только 17 000 последовательных пар из 3 миллиардов). Но она присутствовала у всех самцов и ни у одной самки.
Ученые предпоалагают, что в этом фрагменте дуплицированной ДНК содержится переключатель, который включает выработку SOX9 вместо SRY. «Самцовость» включается одной небольшой последовательностью, и никакая отдельная хромосома, хранящая огромный объем лишних данных, для этого не нужна.
Неизбежное — с точки зрения эволюции — исчезновение Y-хромосомы в человеке заставляет задуматься о нашем будущем. В ходе исследований учёные пришли к выводу, что теоретически люди смогут размножаться и без Y-хромосомы.
Некоторые ящерицы и змеи являются только самками и могут производить яйца из собственных генов посредством так называемого партеногенеза. Но, к сожалению, этого не может произойти с людьми или другими млекопитающими, потому что у нас есть по крайней мере 30 важных «импринтированных» генов, которые работают только в том случае, если они получены от отца через сперму.
Чтобы размножаться, нам нужны сперматозоиды и мужчины, а это означает, что путь японских крыс, рюкийских мышей, арктических леммингов и слепушонок — более логичен. Скорее всего, если мы доживём, люди просто разовьют новый ген, определяющий пол. И будем прекрасно обходиться с одной X-хромосомой.
Самое интересное здесь — то, что эволюция нового гена, определяющего пол, потенциально может произойти по-разному в разных частях мира. Скажем, в Японии будет одна система, а в джунглях Амазонки — другая. И тогда эти люди будут, в теории, считаться разными видами. Собственно, это и произошло со слепушонками и щетинистыми крысами: часть видов там имеют ген SRY и самцов с XY, а часть — нет.
Таким образом, если кто-то посетит Землю через 11 миллионов лет, он может не найти обычных по половому признаку людей. Или, точнее, он увидит несколько разных человеческих видов, разделенных их системами определения пола.
Хотя, конечно, волноваться пока рано. 11 миллионов лет для нашей расы — очень большой срок. Мы, собственно, стали людьми меньше 100 000 лет назад.
Ссылки на источники:
https://www.pnas.org/doi/10.1073/pnas.2211574119
https://habr.com/ru/company/getmatch/blog/710112/